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Bacterial Reproduction



Bacterial reproduction

I bacteria sitting around in a petri dish

I each bacterium has some probability of dividing at a random point in
time

I bacterial division is a Poisson process
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Poisson process

I for very small time intervals, ∆t , there is a constant probability that
some event occurs

I if N(0) = 0 , the N(t) is Poisson distributed with parameter λt

I λ is average number of events per unit time

I waiting time distribution is an exponential distribution
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Distributions

Poisson distribution:

p(k;λ) = Pr(X = k) =
λke−λ

k!

Exponential distribution:

f (x ;λ) =

{
λe−λx , x ≥ 0,

0, x < 0.
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1 _=hist(expon.rvs(scale =1.0, size =10000) ,bins =100)
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1 _=hist(poisson.rvs(10,size =100000) ,bins =100)
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Direct Simulation of Bacterial
Populations



Let’s start with a direct, discrete event simulation of bacterial populations.

We start with a population of 100 cells.

For each cell, we just keep the time (usually, we might have an entire
object representing each population member).

1 cell_division_time = list(expon.rvs(scale =1.0, size =100))
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We keep an agenda, a list of objects by update times. The usual data
structure for this is a heap or a priority queue.

1 from heapq import *

2 heapify(cell_division_time)
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The main simulation consists of taking the next item off the agenda,
simulating the processs, and then pushing new events onto the agend.

1 growth = []

2 for i in range (10000):

3 t = heappop(cell_division_time)

4 growth.append ((t,len(cell_division_time)+1))

5 t1 = t+expon.rvs(scale =20.0)

6 t2 = t+expon.rvs(scale =20)

7 heappush(cell_division_time ,t1)

8 heappush(cell_division_time ,t2)
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We an now see the exponential growth in action. The parameters of the
exponential are related to the initial population and the probability of
reproduction per unit time.

1 growth = array(growth); t = growth [:,0]; p = growth [:,1]; plot(t,p,

linewidth =3)

2 plot(t,exp (0.051*t+log (170)),color=’red’)
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Note that on a small scale, population growth is a stochastic process. In
this case, it is an instance of a birth process.

1 plot(t[:50],p[:50])
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During any unit time, the increase in population is proportional to the size
of the population, since each member of the population will reproduce
with a certain (small) probability.
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1 pops = measurements.mean(growth [:,1], labels=array(growth [:,0],’i’),

index=arange(amax(growth [:,0])))

2 pops = pops [5: -5]; ylim (0 ,0.1); plot((pops [1:]- pops [: -1]) / pops

[:-1])
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Stochastic Difference Equation



In the discrete event model, we simulated each individual population
increase as a Poisson process on each population member.

We can also ask the question: assuming we have a population of N(t)
individuals, what is the expected increase during the interval [t, t + ∆t] .

This increase is given by the Poisson distribution. However, we are
ignoring the births during the time interval itself, so this is a good
approximation only for small ∆t .

1 population = 100

2 times = []

3 p = []

4 for t in linspace (0 ,80,81):

5 population = population + poisson.rvs (0.05 * population)

6 times.append(t)

7 p.append(population)
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Again, we get exponential growth.

1 times = array(times)

2 plot(times ,p,linewidth =3)

3 plot(times ,exp (0.05* times+log (90)),color=’red’)
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Let’s repeat this with different time steps.

1 population = 100

2 times2 = []

3 p2 = []

4 for t in linspace (0 ,80 ,801):

5 population = population + poisson.rvs (0.1 * 0.05 * population)

6 times2.append(t)

7 p2.append(population)
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1 population = 100

2 times3 = []

3 p3 = []

4 for t in linspace (0,80,9):

5 population = population + poisson.rvs (10.0 * 0.05 * population)

6 times3.append(t)

7 p3.append(population)
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1 _p ,=plot(times ,p,color=’blue’)

2 _p2 ,=plot(times2 ,p2,color=’red’)

3 _p3 ,=plot(times3 ,p3,color=’green’)

4 legend ([_p,_p2 ,_p3],"dt=1 dt=0.1 dt=10".split(),loc =2)
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Poisson Distribution in the Limit



In the difference equation, we have been incrementing the population by
the expected growth during each time period.

The actual update is a random variable drawn from a Poisson distribution.

For large increments, the expected value is a good relative approximation
to the actual update.

For smaller increments, the actual update is normally distributed.
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For larger and larger k

I the Poisson distribution approximates a normal distribution

I the Poisson distribution approximates a delta distribution when
normalized for k
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1 for n,c in zip ([20 ,200 ,2000 ,20000 ,200000] ,[’red’,’yellow ’,’green ’,’

blue’,’black’]):

2 xs = arange (2*n)/2.0/n

3 ys = poisson(n).pmf(arange (2*n))

4 ys /= amax(ys)

5 plot(xs ,ys,color=c)
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1 population = 100

2 population2 = 100

3 times = []

4 p = []

5 p2 = []

6 for t in linspace (0 ,80,81):

7 population = population + poisson.rvs (0.05 * population)

8 population2 = population2 + 0.05 * population2

9 times.append(t)

10 p.append(population)

11 p2.append(population2)
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1 plot(times ,p)

2 plot(times ,p2)
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Continuum Limit



Continuum limit

I very large populations in absolute terms

I very large population increases in absolute terms even on small time
scales

Over wide range of time scales:

∆N ≈ Nλ∆t

Express in terms of large population N = xN0 :

∆x ≈ xλ∆t
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Differential equation

Finite equation:

∆x

∆t
≈ λx

Forming the limit as ∆t → 0 :

dx

dt
= λx
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Stochastic differential equation

Finite equation, E (∆t) is a random variable depending on the time
difference:

∆x

∆t
≈ λE (∆t)

Forming the limit as ∆t → 0 :

dx

dt
= λη(x)

Here, η(x) is a kind of generalized function that encapsulates the notion of
small random increments.
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Summary



Concepts

I population: discrete / continuous

I time: discrete / continuous, synchronous / asynchronous

I growth: constant / stochastic
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Types of simulations

I discrete event simulation (discrete population, continuous time,
asynchronous updates, stochastic growth)

I stochastic difference equation (discrete or continuous population,
discrete time, synchronous updates, stochastic growth)

I difference equation (discrete or continuous population, discrete time,
synchronous updates, deterministic growth)

I differential equation (continuous population, continuous time,
deterministic growth)

I stochastic differential equation (continuous population, continuous
time, stochastic growth)
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Exponential growth as differential equation

dx

dt
= λx

Shorthand for:

I growth proportional to population size

I large population, approximated with continuous variable

I growth rate λ related to Poisson process
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Exponential growth

Difference equation:

xt+1 − xt = λxt

Stochastic increments:

xt+1 − xt = Λλ,σxt

Differential equation:

dx

dt
= λx

Note that the growth rates λ are slightly different in the three cases if we
want the curves to line up.
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Growth Patterns and Singularities



Exponential growth (growth proportional to population
size)

dx

dt
= x

x = et

Hyperbolic growth (growth proportional to square of population):

dx

dt
= −x2

x =
1

t

Notes:

I exponential growth has no singularity, hyperbolic growth does
I difference equations do not have singularities

“The Singularity is near”
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