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Social Networks



people and their relations

I actors: people, organizations, groups, pages, products, ...

I relationships friendship, ownership, hug, poke, kinship, ...
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online social networks

Examples: Google+, Facebook, Orkut, ...

Components:

I users

I relations

I profiles

I timelines

I pages/interests
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traditional social networks

Examples:

I intermarriage among Venitian merchant families

I intermarriage in royal families

I message exchanges between employees of a corporation

I report structure in a corporation

I diplomatic relations between countries
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citation analysis

Examples: bibliometrics, page rank, ...

Components:

I publications, books, web pages, ...

I citations, hyperlinks, ...
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representations

I graphs

I directed graphs

I hypergraphs

I matrices

I Markov chains
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datasets

Stanford Large Network Dataset Collection

I Social networks : online social networks, edges represent interactions
between people

I Networks with ground-truth communities : ground-truth network
communities in social and information networks

I Communication networks : email communication networks with edges
representing communication

I Citation networks : nodes represent papers, edges represent citations

I Collaboration networks : nodes represent scientists, edges represent
collaborations (co-authoring a paper)

I ...

http://snap.stanford.edu/data/
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Review of Graphs



graphs

Graph: a set of vertices/nodes V and a set of edges/links E ⊆ V × V

I directed vs undirected graph

I self loops or no self loops

I nodes have degrees, in/out-degrees
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1 G = nx.complete_graph (5)

2 nx.draw(G)
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1 G = nx.empty_graph (6)

2 nx.draw(G)
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1 G = nx.grid_2d_graph (5,4)

2 nx.draw(G)
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1 G = nx.hypercube_graph (3)

2 nx.draw(G)
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1 G = nx.path_graph (5)

2 nx.draw(G)
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1 G = nx.star_graph (7)

2 nx.draw(G)
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1 G = nx.wheel_graph (11)

2 nx.draw(G)
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Frucht graph = cubic graph with only a single (trivial)
automorphism

1 G = nx.frucht_graph ()

2 nx.draw(G)
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1 G = nx.barbell_graph (5,2)

2 nx.draw(G)
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1 G = nx.erdos_renyi_graph (20 ,0.2)

2 nx.draw_circular(G)
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walks, trails, paths

I a walk is a sequence of vertices and edges

I a trail is a walk in which all the edges are distinct

I a path is a walk in which all the edges and all the vertices are distinct

I a closed walk is a walk that starts and ends on the same vertex

I a cycle is a closed walk of at least three nodes, all edges are distinct,
and only the start and end are the same

I a tour is a closed walk in which each edge is used at least once
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distance in graphs

Graphs and paths define a kind of distance.

I a geodesic is the shortest path between two nodes

I the distance or geodesic distance of two nodes is the length of the
shortest path between them

I the diameter of a graph is the longest distance in that graph

I the eccentricity of a node is the largest distance of that node to any
other node
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1 G = nx.erdos_renyi_graph (20 ,0.2)

2 p = nx.shortest_path(G,0 ,19)

3 pos = nx.spring_layout(G)

4 nx.draw_networkx_nodes(G,pos ,node_color=’w’,node_size =200)

5 nx.draw_networkx_labels(G,pos ,font_size =10)

6 nx.draw_networkx_edges(G,pos ,style=’dotted ’)

7 nx.draw_networkx_edges(G,pos ,edgelist=zip(p,p[1:]) ,edge_color=’r’)

8 axis("off"); None
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1 while not nx.is_connected(G): G = nx.erdos_renyi_graph (20 ,0.2)

2 nx.average_shortest_path_length(G)

2.1894736842105265
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connectivity

I graphs are connected or disconnected

I nodes are partitioned into connected components (subgraphs whose
nodes have a finite distance with, and an infinite between them)

I a node is a cutpoint if removing it increases the number of connected
components

I an edge is a bridge if removing it increases the number of connected
components

I a cutset of nodes is a set of nodes such that removing it increases the
number of connected components

I the node connectivity of a connected graph is the minimum size of a
cutset
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applications of connectivity

Node connectivity is related to failure. E.g., the node connectivity of a
computer network (as a graph) tells you the minimum number of failures
before the network becomes disconnected.

Connectivity may also be related to group structure of a social network,
identifying weak or attackable links, etc.

Continuous generalizations are based on flow and the effect of cuts on flow.

Concepts from flow and connectivity are also used in image segmentation.
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1 G = nx.erdos_renyi_graph (20 ,0.3)

2 # nx.minimum_node_cut(G)
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1 for node in range (20):

2 for e in G[node]:

3 G[node][e]["capacity"] = 1.0

4 nx.min_cut(G,0,1,"capacity")

6.0

Thomas Breuel (UniKL) Introduction to Graphs and Social Networks 28 / 1



example: condensation

This is mainly one of many examples of fun and potentially useful
algorithms and concepts lurking in graph libraries. Browse and experiment!

A condensation of a directed graph is a directed graph in which all the
strongly connected components have been turned into a single node.

A strongly connected component of a directed graph is a connected
component in which all nodes are reachable.
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1 G = nx.fast_gnp_random_graph (50 ,0.1,3,1)

2 GC = nx.condensation(G)

3 subplot (121); nx.draw(G)

4 subplot (122); nx.draw(GC)

Thomas Breuel (UniKL) Introduction to Graphs and Social Networks 30 / 1



isomorphism and subgraphs

All graphs described so far are unlabeled: they have no labels
distinguishing nodes or edges from one another and their entire structure
is determined by their connectivity.

A graph isomorphism from G1 = (V1,E1) to G2 = (V2,E2) is a mapping
f : V1 → V2 such that (f (u), f (v)) ∈ E2 iff (u, v) ∈ E1 .

A subgraph is a graph consisting of subset of vertices and edges of another
graph.

Maximum subgraph isomorphism is the problem of finding maximum
subgraphs of G1 and G2 such that the subgraphs are isomorphic.

Question: What is the complexity of graph isomorphism? What is the
complexity of subgraph ismomorphism? How would you solve these
problems?
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isomorphism

1 G1 = nx.erdos_renyi_graph (5 ,0.4)

2 while 1:

3 G2 = nx.erdos_renyi_graph (5 ,0.4)

4 GM = nx.isomorphism.GraphMatcher(G1,G2)

5 if GM.is_isomorphic (): break

6 print GM.mapping

{0: 1, 1: 3, 2: 4, 3: 2, 4: 0}
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1 subplot (121); nx.draw(G1)

2 subplot (122); nx.draw(G2)
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subgraph isomorphism

1 while 1:

2 G1 = nx.erdos_renyi_graph (20 ,0.3)

3 if nx.is_connected(G1): break

4 while 1:

5 G2 = nx.erdos_renyi_graph (5 ,0.3)

6 if not nx.is_connected(G2): continue

7 GM = nx.isomorphism.GraphMatcher(G1,G2)

8 if GM.subgraph_is_isomorphic (): break

9 print GM.mapping

{0: 0, 1: 2, 2: 4, 10: 3, 7: 1}
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1 subplot (121); nx.draw(G1)

2 subplot (122); nx.draw(G2)
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special kinds of graphs

The complement of a graph G = (V ,E ) is a graph Ḡ = (V , Ē ) such that
(u, v) ∈ Ē iff (u, v) 6∈ E .

A tree is an acyclic, connected graph.

A tree is minimally connected since every edge is a bridge.

A forest is an acyclic graph.

A bipartite graph is a graph G = (V1 ∪ V2,E ) where all the edges are of
the form (u, v) with u ∈ V1 and v ∈ V2 .
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1 G = nx.complete_bipartite_graph (5,3)

2 nx.draw_circular(G)
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cliques

A clique is a maximally connected subgraph.

A maximal clique is a clique that is not a subgraph of a larger clique.

A maximum clique is the largest clique in a graph.

Finding a maximum clique is NP-hard.

An independent set is a clique in the complement of a graph.
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1 G = nx.erdos_renyi_graph (20 ,0.4)

2 mc = nx.graph_clique_number(G)

3 print mc

4
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1 for C in nx.find_cliques(G):

2 if len(C)==mc: break

3 print C

4 C = G.subgraph(C)

5 nx.draw_circular(C)

[0, 11, 6, 7]
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Centrality and Prestige



reminder

What we are doing here and below is to try to identify mathematical
descriptors, indexes, numerical measures based on graphs that...

I correspond to some intuitive concept of agents and their relations OR

I correlate with some other concept or numerical measure we are
interested in

E.g., are highly connected individuals on social networks happier than
those who are less connected?
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centrality

Often, we ask the question: who are the “most important” actors or “most
central” actors in a social network (Facebook, criminal network, whatever.)

I most connected / most number of friends

I closest to the rest of the network, lowest average/maximum geodesic
distance

I on most geodesic paths between other actors (nodes the NSA likes)

I frequency with which node is on random walks connecting two other
nodes
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1 G = nx.Graph ()

2 with os.popen("zcat Data/facebook_combined.txt.gz") as stream:

3 for line in stream.readlines ():

4 u,v = [int(x) for x in line [: -1]. split()]

5 G.add_edge(u,v)

6 N = G.number_of_nodes ()

7 print N

4039
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1 N = 200

2 G = nx.erdos_renyi_graph(N ,0.2)
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The degree centrality for a node v is the fraction of nodes it is connected
to.

1 c = nx.degree_centrality(G)

2 c = array([c[i] for i in range(N)])

3 _=hist(log10(c))

4 print find(c==amax(c)),amax(c)

[128] 0.306532663317
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Closeness centrality at a node is 1/average distance to all other nodes.

1 c = nx.closeness_centrality(G)

2 c = array([c[i] for i in range(N)])

3 _ = hist(c)

4 print find(c==amax(c))

[128]
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Betweenness centrality of a node v is the sum of the fraction of all-pairs
shortest paths that pass through v

1 c = nx.betweenness_centrality(G)

2 c = array([c[i] for i in range(N)])

3 _ = hist(c)

4 print find(c==amax(c))

[128]
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Compute current-flow closeness centrality for nodes. A variant of closeness
centrality based on effective resistance between nodes in a network. This
metric is also known as information centrality.
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1 c = nx.current_flow_closeness_centrality(G)

2 c = array([c[i] for i in range(N)])

3 _ = hist(c)

4 print find(c==amax(c))

[128]
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Current-flow betweenness centrality uses an electrical current model for
information spreading in contrast to betweenness centrality which uses
shortest paths. Current-flow betweenness centrality is also known as
random-walk betweenness centrality.
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1 c = nx.approximate_current_flow_betweenness_centrality(G)

2 c = array([c[i] for i in range(N)])

3 _ = hist(c)

4 print find(c==amax(c))

[128]
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Uses the power method to find the eigenvector for the largest eigenvalue
of the adjacency matrix of G. This is related to Google’s page rank.

1 c = nx.eigenvector_centrality(G)

2 c = array([c[i] for i in range(N)])

3 _ = hist(c)

4 print find(c==amax(c))

[128]
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uses of centrality

What can we do with these measures?

What do these centrality measures correlate with? Income? Happiness?
Level in a corporate hierarchy? Leadership in a criminal organization? Etc.

Do some centrality measures correlate better with these variables than
others?
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prestige

In addition to centrality, there are also measures for directed graphs, like
prestige.

E.g., if your paper is cited by someone else, it indicates higher prestige for
your paper.

You citing someone else’s paper does not increase the prestige of your
paper.

Like centrality, there are various different prestige measures.
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Structural Balance



balance

Assume that relations among actors can either be positive (friends) or
negative (foes).

Some patterns of relationships are more “balanced” than others because
they are particularly consistent or transitive.

If A is friends with B and B is friends with C, we expect A to be friends
with C as well. If they are not, then structural balance is violated.
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balance

Definitions of Balance:

I A cycle is balanced if the product of its edges is positive.

I A signed graph is balanced iff all cycles have positive signs.

Numerical indexes:

I The index of balance of a signed graph is the fraction of unbalanced
cycles among all cycles.

I The line index of balance of a signed graph is the fraction of edge
signs that need to be changed to make it balanced.
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clustering based on balance

A balanced signed graph can be divided into sets of nodes that only have
positive relations within each group.
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Cohesive Subgroups



subgroups

Tightly connected groups of people are another concept that’s of interest
in social network analysis.

They often indicate a group of people holding very similar beliefs or
cooperating closely.

The simplest tightly connected subgroup is a maximal clique; we already
talked about these.
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n-cliques

Instead of requiring a subgraph in which every node is connected to every
other, we can require a small geodesic distance.

An n -clique is a maximal subgraph such that the largest geodesic distance
between any two nodes is no greater than n .

n = 1 reduces to the usual clique.

n = 2 is commonly used: it’s robust and simple, but not too large.

n -cliques are not all that useful; e.g., geodesics may include nodes outside
the clique.
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n-clans and n-clubs

An n -clan is an n -clique with a diameter less than or equal to n .

An n -club is a subgraph of diameter less than or equal to n .

A k -core is a subgraph in which each node is adjacent to at least k nodes
within the subgraph.
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Clustering Coefficient



clustering coefficient

The clustering coefficient of a graph is a measure of the degree to which
the graph’s nodes tend to cluster together.

I a triplet is three nodes connected by two or three edges

I a triangle is three closed triplets (one centered on each node)

The clustering coefficient is:

C =
number of closed triplets

number of triplets
=

3× number of triangles

number of triplets
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1 G = nx.erdos_renyi_graph (100 ,0.2)

2 nx.average_clustering(G)

0.2108177882820873
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Other Graphs



multigraphs and hypgergraphs

In graphs with labeled edges, edges are triples (u, v , l) ∈ V × V × L for
some set of labels L .

In multigraphs (labeled or not), multiple edges may occur between two
vertices.

In hypergraphs, edges are subsets of V d for some degree or set of degrees
d .
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relations

In mathematics, we have a closely related concept of relations. Examples
of relations are inequality and equality = .

The relations of a set V are a subset of V × V . This is the same as a
directed graph.

Relations are often defined on infinite sets, but graphs are defined on finite
sets of vertices.

Common terminology:

I reflexive: u / u

I symmetric: u / v ⇒ v / u

I transitive: u / v ∧ v / w ⇒ u / w
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Matrices



adjacency matrix

We often represent graphs as adjacency matrices.

Given a graph (V ,E ) ,

Aij = b(i , j) ∈ Ec

A generalization of a graph is a weighted graph in which edges are
associated with numbers. They have adjacency matrices with more general
values than zero or one.
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adjacency matrices and reachability

Adjacency matrices are closely related to reachability, random walks,
Markov chains.

Given:

v = (0, ..., 1, ....0)

Successor states:

v ′ = A · v

Thomas Breuel (UniKL) Introduction to Graphs and Social Networks 72 / 1


